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Self-Organization of Large Gold Nanoparticle Arrays
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The synthesis of nanostructured materials with tunable proper-
ties is central to developments in nanoscale science and technol-
ogy. Nonlithographic approaches based on thermodynamically
driven self-organization processes are especially appealing because
of their potential for low overhead in large-scale production. The
spontaneous organization of monolayer-protected metal nanopar-
ticles into periodic two-dimensional (2D) arrays is archetypal of
this approach, with many of these arrays demonstrating novel
optical or electronic properties as a function of particle size or
interparticle spacingHydrophobic surfactants such as alkanethi-
ols are often used to drive the nanoparticles toward self-
organization at the aqueous interface; however, 2D array formation
by this methodology has so far been successful only for small
(<10 nm) metal particle3 Stabilized metal particles beyond this

si_ze thr_eshold become increas_ingly prone to multila_yer or three- of self-organized 2D array of 7& 5 nm gold particles encapsulated by
e s s oot e Sy e o ormiar-coted G grd (00 mesh by

. i~ . anual Langmuir Schaefer deposition in the absence of applied lateral
Cha'r! mOb'I".[y on the planar facets of the nanoparticles as a compression. (Inset) Fourier transform of 70-nm particle array.
function of size#

In this communication we describe conditions that enable large
(16—170 nm) gold particles to self-organize at the-airater
interface into monoparticulate films, which can subsequently be
transferred onto substrates as 2D hexagonal close-packed (hcp
arrays. The choice of surfactant is crucial in the stabilization of
these nanoparticle ensembles: the surfactant layer is required t
be highly repulsive at close range but thin enough to maintain
minimal interparticle separations, a critical parameter in the
electromagnetic properties of metal nanoparticle assenilies.
Short-range repulsion can be enhanced by creating a surfactan
layer with hydrophobic chains at intermediate packing denSities
and an appreciable surface charge density for electrostatic double
layer repulsior. These features also render the encapsulated
nanoparticles amphiphilic and promote self-organization at the
air—water interface. We recently demonstrated that calix[4]-
resorcinarenes are excellent surfactants for steric stabilization, an
we have used them to maintain dispersions of gold nanoparticles
up to 20 nm in hydrocarbon solutioASWe now report that
resorcinarene tetrathidlis ideal for promoting the formation of
2D gold nanoparticle arrays with periodicities up to 170 nm, a
length scale comparable to the resolution limits of conventional
photolithography.
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Figure 1. Transmission electron micrograph (Philips EM-400, 80 keV)

Resorcinarene-encapsulated gold nanoparticles of low size
dispersity were prepared by treating aqueous suspensions of
itrate-stabilized gold particles with a solution dfin THF,
ollowed by several washes with tolueh&he adsorption of the
tetrathiols onto the nanoparticle surfaces was expected to be
C}obust, given the multivalent nature of the surfactérasd the
low rates of desorption of aryl monothiols from gold surfates.
The amphiphilic nanoparticles were confined to the solvent
interface and could be carefully collected from the bulk solution

sing silanized pipets. Concentrated suspensions of nanoparticles
were spread onto aiwater interfaces and transferred as films
in the absence of applied surface compression onto surfaces by
horizontal (Langmuir-Schaefer) deposition or by slow vertical
retraction of immersed substrates. Either method produced
OEssentially monoparticulate films with hcp order as determined

y transmission electron microscopy (TEM), demonstrating that
the encapsulated nanoparticles organized spontaneously into 2D
superlattices at the atwater interface (see Figure 1). The degree
of order within the close-packed domains suggests that the
uniformity of the arrays is determined largely by the size and
shape dispersity of the nanoparticles themsel¥es.
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Figure 2. TEM images (Philips EM-400, 86100 keV) of self-organized 42 nm
2D arrays of (A) 16+ 3 nm particles, (B) 34t 2 nm patrticles, and (C)
87 £ 7 nm particles. The images have been sized to emphasize the 34nm o -
changes in particle diametespacing ratio. 16 nm
1.4
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P 0.6] + + Figure 4. Extinction spectra of large gold nanoparticle arrays on smooth
quartz substrates. Spectra were obtained using a HP 8452 spectropho-
0.44 + tometer equipped with a diode array detector (40000 nm) and a
0.2 . . . . . modified Cary-14 spectrophotometer equipped with a NIR photodiode
0 20 40 60 80 100 120 (850-2000 nm). Spectral intensities have been modulated for clarity of
d (nm) presentation with minimal effect on the extinction maxima. Inflections

Figure 3. Average particle diametersi) versus interparticle spacing in the spectra near 1250 and 1400 nm are artifacts from instrumentation.

parametersd) of large gold nanoparticle arrays based on TEM image iy . Heath and co-workers have performed extensive studies on
analysis? Errors are equal to one standard deviation from the mean. o optical properties of small {4 nm) silver nanoparticle arrays

) o ) ~as a function of interparticle separation, and have proposed
(d). However, direct measurement of individual spacings within  quantum mechanical coupling as the basis for changes in optical
well-defined hcp domains enabled the calculation of spacing response at low spacirgliameter ratio$:16
parametersd) with indeterminate errors defined by the digital  The self-organization of large gold nanoparticle arrays can be
resolution of the TEM imagesThese relative values clearly  schieved with structural precision and has excellent potential in
demonstrate a trend toward decreasing average interparticleine faprication of nanostructured films with tunable optical and
spacings with increasing periodicity (see Figure 3). optoelectronic properties. The large gold nanoparticle arrays are
__The particle size and the interparticle spacing have a strong gspecially promising as substrates for surface-enhanced Raman
influence on the optical properties of the large gold nanopartlc_le_ scattering (SERS), and have been shown to generate stable and
arrays. Arrays transferred onto smooth quartz substrates eXh'b'treproducible signal enhancements in excess 6fviith NIR

dipolar plasmon (Mie) resonances which shift and broaden by eycitation” Other structure-dependent optical properties have
hundreds of nanometers into the near-infrared (NIR) with increas- yeen observed and will be reported in due course.
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